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Fokker-Planck equation for lattice deposition models

Chiara Baggio,* Raffaele Vardavas, and Dimitri D. Vvedensky
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 3 July 2001; published 25 September 2001!

An asymptotically exact Fokker-Planck equation for the height fluctuations of lattice deposition models is
derived from a Van Kampen expansion of the master equation. Using an Edwards-Wilkinson-type model as an
example, the solution of the equivalent Langevin equation reproduces the surface roughness and lateral height
correlations obtained with kinetic Monte Carlo~KMC! simulations. Our discrete equations of motion thereby
provide an exact analytic and computational alternative to KMC simulations of these models.
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The ballistic deposition of particles onto a lattice h
broad interest based on the nonequilibrium statistical m
chanics of driven systems@1–3#, as well as ongoing efforts
to use lattice gases to represent macroscopic physical
nomena@4,5#. In deposition models, lattice sites are first ch
sen randomly at a specified rate. Each deposited particle
relaxes to a nearby site that is determined by some crite
based on the original local configuration. Examples inclu
random deposition, where the deposition site is the initia
chosen site, the Edwards-Wilkinson model@6,7#, where the
deposition site is a local height minimum, the Wolf-Villai
model@8,9#, where the deposition site is a local coordinati
maximum, and numerous variations thereon@10–12#.

One of the central concerns in the study of lattice mod
is the expression of the time-development of the system
terms of a stochastic differential equation. For particu
cases, the scaling properties of the growth front enable s
a relationship to be inferred on the basis of universa
classes@2#, though this often requires extensive kine
Monte Carlo~KMC! simulations@13,14#. However, despite
several proposals@15–20#, there is no rigorous procedure fo
relating a set of transition rules to a statistically equival
stochastic equation of motion.

In this Rapid Communication, we use a Van Kampen
pansion of the master equation@21# to obtain an asymptoti-
cally exact Fokker-Planck equation for the height fluctu
tions of lattice deposition models. Using an Edward
Wilkinson-type model@6,7# as an example, the equivale
Langevin equation produces the same surface roughnes
lateral height correlations as KMC simulations, but only
the variable transformations in the Van Kampen expans
are used to relate the KMC and Langevin solutions. T
Langevin and Fokker-Planck equations therefore embody
statistical properties of the original lattice model and so p
vide an analytic and computational alternative to KMC sim
lations.

We consider a one-dimensional lattice on which neit
vacancies nor overhangs are permitted. Thus, associated
each sitei is a column of heighthi and every surface con
figuration corresponds to an arrayH5$h1 ,h2 , . . . %. The
joint probability of the surface configurationH at time t is
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P(H,t). The equation of motion forP from the initial con-
dition P(H,0) is the master equation@21# which, for our
purposes, is most conveniently written as

]P~H,t !

]t
5(

r
W~H2r ;r !P~H2r ,t !2(

r
W~H;r !P~H,t !,

~1!

whereW(H;r ) is the transition rate fromH to H1r , and r
5$r 1 ,r 2 , . . . % is the array of jump lengthsr i at each site.
The summation overr is the joint summation over all ther i .

Master equations provide the same statistical informat
as KMC simulations and so are amenable to exact solu
only in a few cases. Accordingly, we use a Van Kamp
expansion@21# to extract the leading fluctuation correction
to the deterministic solution of Eq.~1!. The basic assumption
of such expansions@21# is thatW(H;r ) is a sharply peaked
function of r but varies slowly withH, i.e., that there exists
a quantityd such that

W~H;r !'0, for ur u.d; ~2!

W~H1DH;r !'W~H;r !, for uDHu,d. ~3!

The first condition is always satisfied by deposition mod
because the difference in successive configurations is
height unit on a single site. However, except for rando
deposition, the final deposition site is determined by comp
ing neighboring heights, which is typically accomplishe
with step functions. Thus, an arbitrarily small change in
height can produce a discontinuous change inW, in clear
violation of Eq.~3!. This problem can be alleviated by tran
forming the time as@22#

t→t5V21t, ~4!

whereV is a ‘‘largeness’’ parameter@21#. Then, in the spirit
of the central limit theorem, thehi are decomposed into
deterministic partf i and fluctuationsj i :

hi~ t !5Vf i~ t !1V1/2j i~ t !. ~5!

The incremental change inhi upon deposition is then

hi2r i5Vf i~ t !1V1/2j i~ t !2r i ~6!
©2001 The American Physical Society03-1
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andP(H,t) transforms as

P~H,t !5P~VF1V1/2J,t ![P~J,t !, ~7!

whereF5$f1 ,f2 , . . . % andJ5$j1 ,j2 , . . . %.
The V expansion of the master equation can now be c

ried out in the standard manner@21#. The terms of orderV1/2

yield equations of motion for thef i(t),

df i

dt
5Ki

(1)~F!, ~8!

whereKi
(1) is the first moment of the transition rate:

Ki
(1)~F!5(

r
r iW~F;r !. ~9!

The leading correction to this deterministic equation, of
der unity, is a Fokker-Planck equation forP:

]P~J,t!

]t
52(

i j

]

]j i
F]Ki

(1)~F!

]f j
j jP~J,t!G

1
a

2 (
i

]2

]j i
2@Ki

(1)~F!P~J,t!#, ~10!

where we have used the fact that, for deposition models
higher moments of the transition rate are diagonal and p
portional to the first moment. In particular,

Ki j
(2)~F!5(

r
r i r jW~F;r !5ad i j Ki

(1)~F!. ~11!

Equations ~8! and ~10! can be subsumed into a sing
Fokker-Planck equation forP(H,t):

]P~H,t !

]t
52(

i

]

]hi
@Ki

(1)~H!P~H,t !#

1
a

2 (
i

]2

]hi
2 @Ki

(1)~H!P~H,t !#. ~12!

In view of Eqs.~4!–~6!, this equation is valid to the orde
V21/2 @23–25#.

The solution of Eq.~12! will be obtained from the equiva
lent Langevin equation@23#:

dhi

dt
5Ki

(1)~H!1h i , ~13!

where theh i are Gaussian noises that have zero me
^h i(t8)&50, and covariances

^h i~ t !h j~ t8!&5aKi
(1)~H!d i j d~ t2t8!. ~14!

The numerical integration of this equation is carried out w
the following time-explicit scheme:
04510
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hi~ t1Dt !5hi~ t !1@Ki
(1)~H!1h i~ t !#Dt, ~15!

where H is the height array at timet. Periodic boundary
conditions are imposed on a lattice withL sites and the initial
conditions arehi(0)50, for i 51,2, . . . ,L. Then, with tn
5nDt, Eqs.~4! and~5! relate the solutionhi(tn) of Eq. ~15!
to the height in the original time variable by

hi~ tn!→Vhi~Vtn!. ~16!

This transformation is the basis for the statistical equivale
of the Langevin equation~13!, or the Fokker-Planck equatio
~12!, and the original lattice model.

In one-dimensional models for which deposition is on
the original site or a nearest-neighbor site, the transition ra
are of the general form

W~H;r !5
1

t0
(

k
Fwk

(1)d~r k2a!)
j Þk

d~r j !

1wk
(2)d~r k212a! )

j Þk21
d~r j !

1wk
(3)d~r k112a! )

j Þk11
d~r j !G , ~17!

wheret0 is the deposition rate,a is the height unit, and the
wk

( i ) determine whether deposition is onto the original s
( i 51) or a nearest-neighbor site (i 52,3). For all such mod-
els @17#

Ki
(1)5

a

t0
@wi

(1)1wi 11
(2) 1wi 21

(3) #. ~18!

We consider a model@17# where a particle remains on th
incident site only if its height is less than or equal to bo
nearest-neighbor heights. If only one nearest-neighbor he
is lower than that of the original site, deposition is onto th
site. But, if both nearest-neighbor heights are lower than
of the original site, the deposition site is chosen random
between the two. Thus,

wk
(1)5uk

1uk
2 ,

wk
(2)5uk

1~12uk
2!1 1

2 ~12uk
1!~12uk

2!, ~19!

wk
(3)5uk

2~12uk
1!1 1

2 ~12uk
1!~12uk

2!,

whereuk
65u(hk612hk) andu(x) is defined by

u~x!5H 1, if x>0;

0, if x,0.
~20!

Our comparison between KMC simulations and the so
tion of Eq. ~15! is based on the surface roughness and
lateral height correlations. The surface roughness is

W~L,t !5@^h2~ t !&2^h~ t !&2#1/2, ~21!
3-2
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where ^hn(t)&5L21( ihi
n(t), for n51,2. For sufficiently

long times and large substrate sizes,W conforms to the dy-
namical scaling hypothesis@2#,

W~L,t !;La f ~ t/Lz!, ~22!

where f (x);xb for x!1, f (x)→constant forx@1, andz
5a/b. The lateral height correlation function is

C~r ,t !5^@hi~ t !2hj~ t !#2&1/2, ~23!

wherer 5u i 2 j u. For r much smaller than the lateral correl
tion length@2#,

C~r ,t !;r a. ~24!

The comparison ofW(L,t) obtained from KMC simula-
tions and from Eq.~15! is shown in Fig. 1 forL580 and

FIG. 1. Surface roughness obtained from the Langevin equa
~15! and KMC simulations for systems of sizeL580 andL5104

for V51,2,20. Data sets forL580 were averaged over 200 inde
pendent realizations. Those forL5104 were obtained from a single
realization. The time is measured in units of monolayers~ML ! de-
posited.
04510
L5104, each forV51,2,20. With increasingV, the rough-
ness obtained for both lattice sizes approaches that of
KMC simulation at all times. The convergence withV is
quite rapid, but there are appreciable discrepancies for s
V. For L580 andV51, the growth front is much rougher
the saturation time is delayed, and the presaturation slop
smaller than in the KMC simulation. There are remnants
these discrepancies forL5104, though the slope appears t
cross over to that of the simulation at long times even
V51.

Figure 2~a! shows the surface roughness obtained fr
Eq. ~15! for lattices of sizesL540,80,160,320,640 withV
510. According to Eq.~22!, a plot of WL2a versustL2z

should, with appropriately chosen values ofa andz, yield a
collapse of the data onto the scaling functionf. This is shown
in Fig. 2~b! for a5 1

2 andz52. The quality of the data col-
lapse indicates not only that these are the correct expone
but that the solution of Eq.~15! with V510 is capable of
reproducing such scaling behavior.

n
FIG. 2. ~a! Surface roughness obtained from the Langevin eq

tion ~15! for V510 and the indicated system sizes. Each data
was averaged over 200 independent realizations.~b! Data collapse
for all system sizes in~a! obtained by plottingWL2a vs tL2z for
a5

1
2 andz52. The slopeb5

1
4 is shown for comparison.
3-3
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The fact that calculations with finiteV produce a roughe
surface than KMC simulations can be understood as follo
In the Langevin equation, the relaxation atevery site at a
given time step is determined from the local configuration
the preceding time step. In the simulations, however, th

FIG. 3. The lateral height correlation function obtained from t
Langevin equation~15! and KMC simulations after the depositio
of 100 ML on a system of sizeL51000 forV51,2,30. The slope
a5

1
2 is shown for comparison.
e

04510
s.

t

surface configuration is updated with each deposition ev
Given that 0<Ki

(1)<3a/t0, with the lower bound produced
by ‘‘peaks’’ in the height profile and the upper bound b
‘‘troughs,’’ deposition ~including the noise! is strongly bi-
ased toward sites at deep local minima. Thus, forV51, the
surface is rougher than in the KMC simulations, but, forV
.1, this effect is counterbalanced by Eq.~16!, which trans-
forms the Langevin timet to a later KMC time Vt, with a
corresponding rescaling of the height.

Figure 3 comparesC(r ,t) determined from KMC simula-
tions with that obtained from solutions of Eq.~15! for L
51000 with V51,2,30. The convergence withV is again
evident, especially for the lateral correlation length and
scaling behavior in Eq.~24!. Neither is reproduced by corre
lation functions obtained withV51 andV52. This com-
parison provides a somewhat more stringent test of
method than that based solely on the roughness becau
shows that the statistics of the spatial arrangements
heights are correctly described.

Finally, we note that our method can be applied to mod
other than those involving only deposition. In particular, si
to-site hopping is amenable to the approach taken here@17#,
but because the noise covariances are not site-diagon
this case, there is no apparent computational advantage
KMC simulations. Nevertheless, our method does establis
direct connection between lattice transition rules and sta
tically equivalent discrete stochastic differential equations
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