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Fokker-Planck equation for lattice deposition models
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An asymptotically exact Fokker-Planck equation for the height fluctuations of lattice deposition models is
derived from a Van Kampen expansion of the master equation. Using an Edwards-Wilkinson-type model as an
example, the solution of the equivalent Langevin equation reproduces the surface roughness and lateral height
correlations obtained with kinetic Monte CarliMC) simulations. Our discrete equations of motion thereby
provide an exact analytic and computational alternative to KMC simulations of these models.
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The ballistic deposition of particles onto a lattice hasp(H,t). The equation of motion foP from the initial con-
broad interest based on the nonequilibrium statistical medition P(H,0) is the master equatiof21] which, for our
chanics of driven systenid-3], as well as ongoing efforts purposes, is most conveniently written as
to use lattice gases to represent macroscopic physical phe-
nomend4,5]. In deposition models, lattice sites are first cho- ¢P(H,t)
sen randomly at a specified rate. Each deposited particle then g~ Er: W(H=rr)P(H=r,1)— Er: W(H;r)P(H,1),
relaxes to a nearby site that is determined by some criterion (1)
based on the original local configuration. Examples include
random deposition, where the deposition site is the initiallywhereW(H;r) is the transition rate front to H+r, andr
chosen site, the Edwards-Wilkinson modé|7], where the ~=1{r1.r2, ...} is the array of jump lengths; at each site.
deposition site is a local height minimum, the Wolf-Villain The summation over is the joint summation over all thg..
model[8,9], where the deposition site is a local coordination ~Master equations provide the same statistical information
maximum, and numerous variations ther¢@f—12. as KMC simulations and so are amenable to exact solution

One of the central concerns in the study of lattice model®nly in a few cases. Accordingly, we use a Van Kampen
is the expression of the time-development of the system igxpansior[21] to extract the leading fluctuation corrections
terms of a stochastic differential equation. For particularto the deterministic solution of E1). The basic assumption
cases, the scaling properties of the growth front enable suc®f such expansion21] is thatW(H;r) is a sharply peaked
a relationship to be inferred on the basis of universalityfunction ofr but varies slowly withH, i.e., that there exists
classes[2], though this often requires extensive kinetic @ quantitys such that
Monte Carlo(KMC) simulations[13,14]. However, despite

several proposalgl5—2(, there is no rigorous procedure for W(H;r)=0, for [r[>§; 2
relating a set of transition rules to a statistically equivalent
stochastic equation of motion. W(H+AH;r)~W(H;r), for |AH|<é. 3)

In this Rapid Communication, we use a Van Kampen ex-
pansion of the master equati¢®1] to obtain an asymptoti- The first condition is always satisfied by deposition models
cally exact Fokker-Planck equation for the height fluctua-because the difference in successive configurations is one
tions of lattice deposition models. Using an Edwards-height unit on a single site. However, except for random
Wilkinson-type model[6,7] as an example, the equivalent deposition, the final deposition site is determined by compar-
Langevin equation produces the same surface roughness aifi neighboring heights, which is typically accomplished
lateral height correlations as KMC simulations, but only if with step functions. Thus, an arbitrarily small change in a
the variable transformations in the Van Kampen expansiofieight can produce a discontinuous changehinin clear
are used to relate the KMC and Langevin solutions. Theviolation of Eq.(3). This problem can be alleviated by trans-
Langevin and Fokker-Planck equations therefore embody th#®rming the time ag22]
statistical properties of the original lattice model and so pro-
vide an analytic and computational alternative to KMC simu- t—r=0"1, (4)
lations.

We consider a one-dimensional lattice on which neithetVN€re{ is a “largeness” parametge1]. Then, in the spirit
vacancies nor overhangs are permitted. Thus, associated wigh the central limit theorem, the; are decomposed into a
each sitei is a column of heighh, and every surface con- deterministic parih; and fluctuations; :
figuration corresponds to an arrdy={h,,h,, ...}. The "
joint probability of the surface configuratiad at timet is hi()=Q () +Q7&(1). ®)

The incremental change im upon deposition is then

*Permanent address: Dipartimento di Fisica, UniversitaPa- 1o
dova, Via F. Marzolo 8-35131, Padova, Italy. hi—ri=Q¢(t) + Q7 (t)—r, (6)
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andP(H,t) transforms as hi(t+At)=h;(t) +[KD(H) + 7 (1) ]At, (15)
P(H,t)=P(Q®+ QY%= t)=II(E, 1), (7)  whereH is the height array at timé. Periodic boundary
conditions are imposed on a lattice wlitsites and the initial

where®={¢,,¢,, ...} andE={¢&,,&, ...} conditions areh;(0)=0, for i=1,2,... L. Then, witht,

The Q) expansion of the master equation can now be car=nAt, Egs.(4) and(5) relate the solutiom;(t,) of Eq. (15)
ried out in the standard manné1]. The terms of ordef)>  to the height in the original time variable by
yield equations of motion for the;(t),
hi(t) — Qhi(Qty). (16)
ddi K@), (8)  This transformation is the basis for the statistical equivalence
dr of the Langevin equatio(iL3), or the Fokker-Planck equation
(12), and the original lattice model.
In one-dimensional models for which deposition is onto
the original site or a nearest-neighbor site, the transition rates

whereK(® is the first moment of the transition rate:

Ki(l)(q,)zz rW(D;r). (9 are of the general form
r
The leading correction to this deterministic equation, of or- W(H;r)= p 2 Wy 5(rk—a)H o(ry)
der unity, is a Fokker-Planck equation for. 0 k J7k
MED 0 KO@) +W‘k2’5(rk71—a)j#1;[71 8(ry)
T_— - a—é_l a—qslgln(_z,’i')
(3) _
aq P wds(rie—a) [T strp),  @17)
t5 2 AKP@NEDL a0 ik
i i

where 7, is the deposition rateg is the height unit, and the
where we have used the fact that, for deposition models, aiv{’ determine whether deposition is onto the original site
higher moments of the transition rate are diagonal and pro¢i =1) or a nearest-neighbor site<2,3). For all such mod-
portional to the first moment. In particular, els[17]

a
K&(@)=2 rirw@;n=as;K(®). (11 K§1>:T—[w§1>+w§i>l+w§i>l]. (18)
r 0

Equations (8) and (10) can be subsumed into a single We consider a mod¢lL7] where a particle remains on the
Fokker-Planck equation fdP(H,t): incident site only if its height is less than or equal to both
nearest-neighbor heights. If only one nearest-neighbor height

P(H,t) 9 ) is lower than that of the original site, deposition is onto that
P - W[K‘( (H)P(H,1)] site. But, if both nearest-neighbor heights are lower than that
' : of the original site, the deposition site is chosen randomly
a 92 between the two. Thus,
+5 2 o2 KPHPHDI (12
2 i &hl (1) 4 o=
Wi =0y Oy
In view of Egs.(4)—(6), this equation is valid to the order
0 Y2[23-25, wP=6; (1= 6)+3(1-6)(1-6), (19
The solution of Eq(12) will be obtained from the equiva-
lent Langevin equatioh23]: w®=06,(1-6)+3(1-6)(1—-6,),
dh where 6, = 8(h,.,—h,) and 6(x) is defined by
a3t =K+ 7, (13
1, if x=0;
where the z; are Gaussian noises that have zero mean, 0(x) = 0, if x<0. (20)

(n;(t"))=0, and covariances
Our comparison between KMC simulations and the solu-
(i) 7;(t))y=akKP(H) & 8(t—t"). (14)  tion of Eq. (15) is based on the surface roughness and the
lateral height correlations. The surface roughness is
The numerical integration of this equation is carried out with
the following time-explicit scheme: W(L,t)=[(h2(t))—(h(t))?]*?, (21)
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_ _ _ FIG. 2. (a) Surface roughness obtained from the Langevin equa-
FIG. 1. Surface roughness obtained from the Langevin equatiofon (15) for (=10 and the indicated system sizes. Each data set

(15 and KMC simulations for systems of size=80 andL=1Q4 was averaged over 200 independent realizatiémsData collapse
for =1,2,20. Data sets fdr =80 were averaged over 200 inde- fgr g| system sizes irfa) obtained by plottingV/L™* vs tL =2 for

pendent realizations. Those for= 10_4 were obtained from a single  ,—1 andz=2. The slopes=1 is shown for comparison.
realization. The time is measured in units of monolay®s ) de-
posited. o )

L=10% each forQ)=1,2,20. With increasing?, the rough-

where (h"(t))=L"'3;h(t), for n=1,2. For sufficiently —Nness obtained for both lattice sizes approaches that of the
long times and large substrate sizééconforms to the dy- KMC simulation at all times. The convergence with is

namical scaling hypothes|g], quite rapid, but there are appreciable discrepancies for small
Q. ForL=80 andQ)=1, the growth front is much rougher,
W(L,t)~Lef(t/L?), (220  the saturation time is delayed, and the presaturation slope is

smaller than in the KMC simulation. There are remnants of
where f(x)~x# for x<1, f(x)—constant forx>1, andz  these discrepancies far=10" though the slope appears to

=alB. The lateral height correlation function is cross over to that of the simulation at long times even for
O=1.
C(r,t)={[hi(t) —h;()]*)*2, (23 Figure 2a) shows the surface roughness obtained from
Eq. (15) for lattices of sized.=40,80,160,320,640 witlt)
wherer =|i —j|. Forr much smaller than the lateral correla- =10. According to Eq(22), a plot of WL~ versustL 2
tion length[2], should, with appropriately chosen valueseofndz, yield a
collapse of the data onto the scaling functfoiihis is shown
C(r,t)~re. (24)  in Fig. 2b) for a=% andz=2. The quality of the data col-

lapse indicates not only that these are the correct exponents,
The comparison ofV(L,t) obtained from KMC simula- but that the solution of Eq(15) with 1=10 is capable of
tions and from Eq(15) is shown in Fig. 1 forlL,=80 and reproducing such scaling behavior.
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T N ] surface configuration is updated with each deposition event.
AAAggegAA SSA%S Given that 6<K(M<3a/r,, with the lower bound produced
AAgOOO 000 ° . | by “peaks” in the height profile and the upper bound by
o .IE“EHHHE‘E “troughs,” deposition (including the noiseis strongly bi-
= ased toward sites at deep local minima. Thus (et 1, the
5 surface is rougher than in the KMC simulations, but, fbr
£ Q=1 ] >1, this effect is counterbalanced by E@6), which trans-
2 Q=2 forms the Langevin timé to alater KMC time Qt, with a
g Q=30 corresponding rescaling of the height.
Figure 3 compare€(r,t) determined from KMC simula-
KMC tions with that obtained from solutions of E¢L5) for L
10° a=1/2 =1000 with 2=1,2,30. The convergence witf} is again
evident, especially for the lateral correlation length and the
[ N, N, , scaling behavior in Eq.24). Neither is reproduced by corre-
10° 10! 102 lation functions obtained witlfl=1 and(Q=2. This com-
r (units of a) parison provides a somewhat more stringent test of our

) ) ) ) method than that based solely on the roughness because it

FIG._S. The I_ateral height correl_atlon functlon obtained fro_n? thesr.|OWS that the statistics of the spatial arrangements of
Langevin equatior{15) and KMC simulations after the deposition heights are correctly described.
of 100 ML on a system of size =1000 for{}=1,2,30. The slope Finally, we note that our method can be applied to models
=7 Is shown for comparison. other than those involving only deposition. In particular, site-

to-site hopping is amenable to the approach taken [Hefe

The fact that calculations with finit8 produce a rougher but because the noise covariances are not site-diagonal in
surface than KMC simulations can be understood as followsthis case, there is no apparent computational advantage over
In the Langevin equation, the relaxation eterysite at a KMC simulations. Nevertheless, our method does establish a
given time step is determined from the local configuration aidirect connection between lattice transition rules and statis-
the precedingtime step. In the simulations, however, the tically equivalent discrete stochastic differential equations.
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